Discontinuous Galerkin finite element heterogeneous multiscale method for advection-diffusion problems with multiple scales
نویسندگان
چکیده
A discontinuous Galerkin finite element heterogeneous multiscale method is proposed for advectiondiffusion problems with highly oscillatory coefficients. The method is based on a coupling of a discontinuous Galerkin discretization for an effective advection-diffusion problem on a macroscopic mesh, whose a priori unknown data are recovered from micro finite element calculations on sampling domains within each macro element. The computational work involved is independent of the high oscillations in the problem at the smallest scale. The stability of our method (depending on both macro and micro mesh sizes) is established for both diffusion dominated and advection dominated regimes without any assumptions about the type of heterogeneities in the data. Fully discrete a priori error bounds are derived for periodic data. Numerical experiments confirm the theoretical error estimates.
منابع مشابه
Numerical homogenization method for parabolic advection-diffusion multiscale problems with large compressible flows
We introduce a numerical homogenization method based on a discontinuous Galerkin finite element heterogeneous multiscale method (DG-HMM) to efficiently approximate the effective solution of parabolic advection-diffusion problems with rapidly varying coefficients, large Péclet number and compressible flows. To estimate the missing data of an effective model, numerical upscaling is performed whic...
متن کاملThe heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift
This contribution is concerned with the formulation of a heterogeneous multiscale finite elements method (HMM) for solving linear advectiondiffusion problems with rapidly oscillating coefficient functions and a large expected drift. We show that, in the case of periodic coefficient functions, this approach is equivalent to a discretization of the two-scale homogenized equation by means of a Dis...
متن کاملDiscontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales
An analysis of a multiscale symmetric interior penalty discontinuous Galerkin finite element method for the numerical discretization of elliptic problems with multiple scales is proposed. This new method, first described in [A. Abdulle, C.R. Acad. Sci. Paris, Ser. I 346 (2008)] is based on numerical homogenization. It allows to significantly reduce the computational cost of a fine scale discont...
متن کاملA Multiscale Discontinuous Galerkin Method
We propose a new class of Discontinuous Galerkin (DG) methods based on variational multiscale ideas. Our approach begins with an additive decomposition of the discontinuous finite element space into continuous (coarse) and discontinuous (fine) components. Variational multiscale analysis is used to define an interscale transfer operator that associates coarse and fine scale functions. Compositio...
متن کاملOptimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems
We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Ventcell transmission conditions. We analyze the semidiscretization in time with discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 126 شماره
صفحات -
تاریخ انتشار 2014